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ABSTRACT

Epoxidation of either cis- or trans-1-methylene-2-bromo-3-(trimethylsilyl)cyclopropane by dimethyldioxirane followed by elimination of the
epoxide over solid tetra-n-butylammonium fluoride using the vacuum gas−solid reaction procedure yields oxaspiropentene. The nuclear magnetic
resonance spectrum of oxaspiropentene was recorded at −95 °C. Exact bond lengths were determined computationally.

Small-ring spiroconnected cycloalkenes can have, in prin-
ciple, interesting properties resulting from spiro conjugation.1

Although spiropentene (1)2 and spiropentadiene (2)3 have
been synthesized recently and characterized spectroscopi-
cally, simple spirenes in which heteroatoms are part of the
ring system have not been investigated. A derivative of
oxaspiropentene, compound3, has been described,4 but the
parent compound4 has not been reported. We report here
the synthesis of oxaspiropentene via the vacuum gas-solid
reaction procedure.5

The synthesis of oxaspiropentene is illustrated as follows:

The starting compound56 was prepared in nearly quantitative
yield by oxidation of67 using dimethyldioxirane.8 Elimina-
tion of trimethylsilyl bromide from the epoxide5 using solid
(n-Bu)4N+F- adsorbed on glass helices as described previ-

ously5 for other strained-ring compounds could be effected
in vacuo at 25°C.

Oxaspiropentene is stable below about-70 °C. The1H
NMR spectrum, recorded in tetrahydrofuran-d8 at -95 °C,
exhibits singlets atδ 2.89 and 7.28.13C NMR signals
observed at 116.73, 38.87, and 30.76 ppm are in agreement

with 13C chemical shifts calculated using the MP2/6-311G-
(d,p) basis set at the MP2/6-311G(d,p) geometry (Figure 1).9
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0.13 (s, 9H);13C NMR 61.34, 48.83, 19.13, 15.88,-1.82 ppm; CI HRMS
m/e (m + 1) calcd for C7H14O79Br 220.9997, found 220.9994; calcd for
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Figure 1. Experimental and calculated13C chemical shifts for4.
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Molecular composition was provided by high-resolution mass
spectroscopy: CI HRMS (m+ 1) calcd for C4H5O m/e
69.0340, found 69.0343.

Optimized bond lengths for4 calculated at the same level
of theory are presented in Figure 2.

The Diels-Alder adduct7 could be isolated (one isomer)
in 30% yield when4 was condensed onto the surface of a
cold trap coated with cyclopentadiene.10 The 1H NMR
spectrum of7 exhibits signals atδ 5.74 (t, 2H,J ) 2.1 Hz),

3.01 (m, 2H), 2.94 (m, 2 H), 1.44 (s, 2H), 1.21 (dt, 1H,J )
7.6, 1.5 Hz), and 1.00 (d, 1H,J ) 7.6 Hz).13C NMR signals
were observed at 131.21, 63.17, 54.19, 47.87, 42.63, and
21.55 ppm. CI HRMS: (m+ 1) calcd for C9H10O m/e
135.0810, found 135.0816.

Studies on the X-ray crystal structure of4 are planned.
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Figure 2. MP2/6-311G(d,p) geometry optimized bond lengths (Å).
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